Ⅳ. 地震後の崩壊発生降雨基準に関する一考察

宇都宮大学 執印康裕、 筑波大学 堀田紀文、土木研究所 小山内信智 国土技術政策総合研究所 岡本敦(現国交省砂防部)

4.1 はじめに

豪雨を誘因として発生する土砂災害を軽減するために は、災害を引き起こす可能性が高い降雨特性の評価およ び土砂移動現象の場としての素因(地形,地質,植生等) の評価の両方が必要となる。降雨の評価については、実 効雨量(鈴木・小橋(1981))や土壌雨量指数(岡田(2001)) の手法が提案されている。中でも土壌雨量指数は国土交 通省と気象庁の連携による土砂災害警戒避難基準雨量の 設定手法(案)(国土交通省河川局砂防部・気象庁予報部・ 国土交通省国土技術総合研究所(2005))の基本となる降 雨指標であり、わが国における土砂災害対策に大きく貢 献している。

一方で土砂移動現象の場としての素因は、森林伐採や 道路建設等の地形改変による人為的な撹乱、および地震 等の自然による撹乱の影響を受けて変動する。このよう な素因の変化によって降雨による土砂移動現象の応答特 性が変化することは良く知られた事実である(例えば Keefer (1994). Chang and Slavmaker (2002). Dhakal and Sidle (2003)など)。特に地震については、集集地震(近藤 6 (2003), Dadson, et al. (2004), Shieh, et al. (2009), Chuang, et al.(2009)) 四川地震 (Tang and Liang (2007), Ou, et al.(2010)) 芸予地震(森脇ら(2004)) 兵庫県南部地震(冨 田ら(1996)、鳥居ら(2007))等を対象として、地震による 素因の変化がその後の土砂移動現象に与える影響を検討 した多くの研究が存在している。これらの既往研究にお いて地震後は地震前と比較して流域からの生産土砂量が 増大していること (Dadson, et al. (2004), Lin, et al. (2006)), 地震前と比較して少ない降雨指標によって崩壊および土 石流が発生し(冨田ら(1996), Lin, et al.(2003), 堀田ら (2005))、降雨基準の見直しが行なわれていること(Tang and Liang(2007), Ou, et al.(2010)) が報告されている。わが 国においても、2011年3月11日に発生した東北地方太 平洋沖地震の影響を考慮して、土砂災害警戒避難情報の 土壌雨量指数基準値が引き下げられたことは周知の事実 である。以上のような地震による影響を、広域を対象に 定量的に評価したモデルとして、Chang. et al. (2007) に よるものがある。Chang, et al. (2007) は集集地震を対象 にして地震前後の降雨-崩壊発生関係の変化を多変量解 析の一つである対数回帰分析による手法を用いて評価し ている。一方で鳥居ら(2007)は兵庫県南部地震を対象 に地震後の降雨が崩壊発生に与える影響を土質試験の結 果を用いて崩壊発生機構の面から検討している。鳥居ら (2007)によれば、地震動によって土粒子間において構成 されている骨格構造が破壊され、その影響は土質強度定 数の粘着力の低下として表れることが指摘されている。 以上のように、地震後の降雨が崩壊発生に与える影響の 評価手法については、広域および土質試験による崩壊発 生機構の両面から検討されているが、多変量解析による 評価は広域を対象に適用できる反面、崩壊発生機構の評 価を行うには不適である。一方で鳥居ら(2007)の手法を

広域に対して適用し、崩壊発生危険度の評価を行うこと は困難であると考える。執印ら (2011) は Okimura and Ichikawa (1985)によって提示されたプロセスベースモデ ルを基本とする応答モデルを用いて、降雨及び地形が崩 壊発生に与える影響を評価しているが、本論ではこれを 用いて、鳥居ら (2007) によって指摘されている崩壊発 生機構の面からみた地震による土質強度の変化に着目し、 広域での地震後の降雨-崩壊関係における崩壊発生機構 の評価の可能性について検討したので、ここに報告する。

4.2 解析対象地および解析手法

4.2.1 解析対象地と使用データ

解析対象地として宇都宮大学農学部附属船生演習林を 設定した。本演習林は,高原山系に連なる南北に走る細 長い山塊の西斜面に位置しており(およそ北緯 36 度 45 分 - 48 分,東経 139 度 47 分 - 50 分),標高は 260 - 600 m の範囲にある。基盤地質は第三紀層石英粗面岩である。 年平均気温は約 12 ℃,年平均降水量はおよそ 1700 mm である。1 月から 3 月にかけて降雪があるが積雪量は少 なく,降水量の大部分が降雨によるものである。演習林 の総面積はおよそ 531ha である。図-4.1 に船生演習林の 概略位置図を示す。

習林は東北地方太平洋沖地震による土砂災害警戒避難 情報の土壌雨量指数基準値引き下げ対象地域とはなって いないが、本演習林を解析対象地として選定した理由は、 1)1998年の8月末の台風4号による集中豪雨によって演 習林内36箇所の複数地点で表層崩壊が記録されている

こと(宇都宮大学演習林研究部(1999)), 2)1998年8月末 の台風4号による豪雨以外によっては1979年から現時点 2011年までの範囲で1998年規模の表層崩壊が発生して いないこと, 3)プロセスベースモデルを適用するのに最 低限必要な数値標高地図が10mグリッドで整備されて いること,の3点による。中でも対象とする地域におい て1998年に崩壊が多発した事実は、崩壊発生・非発生降 雨の評価に対して地震前の素因による影響を考慮するこ とが出来ることを意味しており、解析を行う上では極め て重要な意味をもつ。崩壊発生降雨・非発生降雨の評価 の基本データとして船生演習林近傍に設置されている気 象庁の塩谷アメダス観測点(北緯36度45分,東経139 度50分,標高225m)の1994年から2003年までの10 年間の時間雨量データを使用した。

4.2.2 解析手法

4.2.2.1 検討に使用した崩壊発生降雨指標について

検討にあたっては、わが国で広く適用され有効性が確 認されている土壌雨量指数および、執印ら(2011)によっ て提示されている潜在崩壊面積指数の2種類を使用した。 土壌雨量指数については「国土交通省河川局砂防部と気 象庁予報部の連携による土砂災害警戒避難基準雨量の設 定手法(案)」(国土交通省河川局砂防部・気象庁予報部・ 国土交通省国土技術総合研究所(2005))に従って計算し ている。計算にあたっては前期降雨の影響を含んだ形で 評価するために1降雨イベント毎に切り分けず 1994 年 から2003年までの各年毎に1時間単位で通年計算を行な っている。

土質強度特性の影響を評価するためのプロセスベース モデルは、Okimura and Ichikawa (1985)によって提示され たモデルを基本とする応答モデルである(執印ら(2011))。 本モデルは降雨一地下水位変換過程及び潜在表層崩壊斜 面抽出過程の2つを基本要素としている。モデル計算に おいては降雨一地下水位変換過程では、飽和側方流の流 下過程を考慮した連続式(4.1)及びダルシーの運動方程式 (4.2),(4.3)によって地下水位の変動を計算する構造となっ ている。

ここで、h:有効地下水位(m), q:単位時間あたりの単位 幅流量(m²/hr), I:動水勾配, r:有効降雨強度(m/hr), k: 有効飽和透水係数(m/hr), λ :有効間隙率であり、添字 x,y は各方向の成分を示す。本論においては上式を差分化 し各時間ステップにおける 10m グリッドで構成される 各セル全てにおいて地下水位を算出している。なお、計 算にあたっては土壌雨量指数と同様に各年毎に連続して 1時間ステップで計算している。

10m グリッドで構成される各セルの崩壊発生基準は、 無限長斜面の斜面安定解析式によって判断した。図-4.2 に無限長斜面安定解析の模式図を式(4.4)に採用した安定 解析式を示す。

$$F = \frac{(\gamma \ Z - \gamma_{\rm w} h) \cos^2 \alpha \tan \phi + C_{eff}}{\gamma \ Z \cos \alpha \sin \alpha} \qquad \cdots (4.4)$$

但し F:安全率, γ :土の湿潤単位体積重量 (kN/m³), γ_w :水の単位体積重量 (kN/m³), α :基盤層勾配(degree), Z:有効土層厚さ (m), h:基盤層からの地下水位 (m), ϕ :土の有効内部摩擦角(degree), C_{eff}:土の有効粘着力 (kPa)

本モデルに適用した計算設定諸元の一覧を表-4.1 に示 す。表-4.1 に示すように有効土層厚Z(m)については全 セルにおいて 1.0m を与え、有効飽和透水係数 k(m/h r)および有効間隙率 λ については、Okimura and Ichikawa(1985)を参考に k=1.8m/hr, λ =0.35 を与えている。 有効粘着力 $C_{eff}(kPa)$ の値のみを 0.1kPa から 6.0kPa まで変 化させて検討を行った。

潜在崩壊面積指数の定義は、対象空間範囲において式 (4.4)の無限長斜面安定解析式によって求められる安全率 1を下回るセルの総面積から無降雨時において発生する 安全率1を下回るセル面積を差し引いたものを潜在崩壊 面積指数として定義した。

4.2.2.2 検討手順について

土壌雨量指数および潜在崩壊面積指数とも、降雨イベ ント毎に切り分けずに1年間連続して計算を行なってい るが、各降雨特性との対比が容易なように、降雨期間毎 に時間を区分して検討を行なった。降雨期間の切り分け は、24時間連続して無降雨が継続した期間によって行い、 各降雨期間における降雨開始時点から降雨終了後24時 間までの間で計算される土壌雨量指数および潜在崩壊面 積指数の最大値を検討に使用している。

図-4.2 無限長斜面安定解析の模式図

具体的な検討手順は以下のとおりである。

- 手順1:降雨期間の切り分け
- 手順2:降雨期間における豪雨イベント期間の抽出
- 手順3:抽出された豪雨期間における土壌雨量指数の最 大値の抽出
- 手順4:崩壊発生降雨と非発生降雨イベントによる潜在 崩壊面積指数の応答解析
- 手順5:潜在崩壊面積指数と土壌雨量指数の比較検討
- 手順6:潜在崩壊面積指数による崩壊壊発生・非発生降 雨区分の基準値の導出
- 手順7:地震による土質強度変化を考慮した降雨指標に ついての検討

以上の7手順によって検討を行なった。なお、手順2 の豪雨イベント期間の抽出においては、積算雨量,24時 間雨量,1時間雨量のいずれかが、上位30位にはいるイ ベントを抽出した。

4.3 結果および考察

4.3.1 抽出された各豪雨イベント期間の降雨特性に ついて

1994年から2003年までの10年間において降雨期間は 698に区分された。区分された降雨期間のうち積算雨量, 24時間雨量,1時間雨量のいずれかが、上位30位にはい る豪雨イベントは全部で50降雨イベントであった。各豪 雨イベントの特性一覧を表-4.2に示す。

表-4.2において降雨番号は1994年を起点として発生順 につけてある。表2には豪雨イベント期間中における土 壌雨量指数の最大値を併せて示している。表示した豪雨 イベントのうち、降雨番号 318 が対象地内において崩壊 を多発させた 1998 年8月末の豪雨と対応しており、土壌 雨量指数の値は 206mm と最大を示している。それ以外 の豪雨期間では崩壊は発生していないが、降雨番号 318 についで土壌雨量指数が大きい値を示したのは降雨番号 591 の 191mm であることが確認される。

表-4.1 モデル計算の設定パラメータ諸量

Symbol	Value	Unit	Description	note
γw	9.81	kN/m ³	Unit weight of water	fixed
γ	17.66	kN/m ³	Unit weight of the moist soil	fixed
λ	0.35	-	Effective porosity of the soil layer	fixed
k	1.8	m/hr	Effective hydraulic conductivity	fixed
Z	1.0	m	Effective soil thickness	fixed
ϕ	30.0	degree	Effeictive soil internal angle	fixed
C_{eff}	0.1-6.0	kPa	Effeictive soil cohesion	varied

4.3.2 崩壊発生降雨と非発生降雨イベントによる潜 在崩壊面積指数の応答解析

潜在崩壊面積指数のモデル出力値は有効粘着力の値に よって変化する。また前節の土壌雨量指数の計算結果に おいて降雨番号 318 が最大の出力値を示し次いで降雨番 号 591 の値が2番目の値であることが確認されている。 そこで降雨番号 318番および 591番の2豪雨期間におい て両者の最大潜在崩壊面積指数の(4.5)式に示す相対比率 差 RD_PLAI が有効粘着力の値によってどのように変化 するかについて検討した。結果を図-4.3 に示す。

表 4.2:抽出された 50 降雨の特性一覧

Event Ne	TR	Max_I	Max_24hrs	SWI
Event_No.	(mm)	(mm/hr)	(mm/24hr)	(mm)
22	173	28	167	110
42	132	35	91	80
46	71	25	69	68
47	141	14	38	78
93	96	9	74	80
103	112	10	61	89
105	87	25	58	75
110	90	23	53	75
125	113	8	73	84
171	34	30	34	41
176	54	22	54	55
186	91	12	84	81
223	145	13	80	98
231	133	24	133	118
236	87	33	87	79
240	118	39	86	96
250	94	9	41	67
316	110	15	42	66
318	567	62	265	206
322	189	31	187	127
332	115	19	63	97
364	93	16	92	85
377	210	19	107	117
380	268	23	109	136
389	160	27	111	107
393	135	52	135	129
400	68	30	35	65
402	85	26	70	69
447	76	14	76	75
452	36	22	36	50
454	115	22	115	89
462	41	33	41	55
470	82	25	82	88
471	143	18	113	116
473	95	13	87	80
524	95	24	48	69
530	168	26	163	119
531	146	35	90	119
534	190	19	128	120
541	126	12	126	97
566	84	9	84	89
591	320	37	215	191
593	71	27	69	84
595	76	22	52	66
601	88	33	60	64
604	97	13	57	81
610	129	29	124	129
662	73	39	51	78
673	97	9	46	61
695	80	9	78	80

*TR: Total rainfall, Max_I: maximum hourly intensity Max_24hrs: maximum 24 hours rainfall, SWI: Soil water index

$$RD_PLAI = 1 - \frac{PLAI_{591max}}{PLAI_{318max}} \cdots (4.5)$$

但し RD_PLAI: 相対比率差, PLAI_{591max}:降雨番号 591 における潜在崩壊面積指数の 1998 年最大値, PLAI_{319max}:降雨番号 318 における潜在崩壊面積指数の最 大値である。

図-4.3 から判るように、有効粘着力の値が低すぎても 高すぎても両イベント期間の崩壊面積指数の差には顕著 な違いはみられず、有効粘着力の値が 5.0kPa あたりで相 対比率差が大きくなる(約25%)傾向にあることが判る。 この差は土壌雨量指数による相対比率差(約7%)と比 較してより明瞭であることが確認される。以上のことか ら崩壊発生・非発生降雨の分離に用いる潜在崩壊面積指 数の計算にあたっては、有効粘着力の値として 5.0kPa を 採用することとした。

4.3.3 土壌雨量指数と潜在崩壊面積指数の対応関係に ついて

本節においては、土壌雨量指数と潜在崩壊面積指数の 対応関係について検討する。図-4.4 に前節において示さ れた有効粘着力5.0kPa時の潜在崩壊面積指数および土壌 雨量指数の1998年8月1日から9月30日までの経時変 化を示す。図-4.4 より両者には良好な対応関係があるこ とが確認される。そこで4.3.1 節において抽出された50 イベントの豪雨期間を対象として、土壌雨量指数と潜在 崩壊面積指数の対応関係を検討した結果を図-4.5 に示す。

図-4.5 より、両者は極めて良好な相関関係にあり、土 壌雨量指数および潜在崩壊面積指数の両指標ともに、崩 壊発生・非発生の降雨特性の分離には有効であることが 確認される。図-4.5 にはべき乗関数による近似式を併せ

Rainfall without landslides

0

150

Soil water index

200

2

(mm)

図 4.5 土壌雨量指数と潜在崩壊面積指数の関係

50

index

1(

Potential landslide area

て示しているが、べき乗の値は1.9であり1より大きい。 このことは両指数とも崩壊発生・非発生降雨の分離には 有効であるが、崩壊発生の可能性が高い豪雨ほど、土壌 雨量指数と比較して潜在崩壊面積指数による差が顕著に 検出される傾向にあることを意味している。執印ら

100

(2011)は、同地域を対象に潜在崩壊面積指数の確率年の評価から1.3×10⁴km²が崩壊発生・非発生降雨を分離する一つの基準値となりうることを示しているが、本論においてもこの値を採用し以後の検討を進めることとする。

4.3.4 地震による土質強度変化を考慮した降雨指標 についての検討

第4.1 節において、既往研究の結果から地震後は地震 前と比較して少ない降雨量で崩壊が発生する傾向にある こと(冨田ら(1996))、また崩壊発生機構の面からは土 質強度定数の粘着力の低下によって説明されること(鳥

図 4.6 有効粘着力と土壌雨量指数による崩壊発生基準

居ら(2007))を記述した。更にこれまでの本論における 検討結果から、

- 1. 潜在崩壊面積指数と土壌雨量指数は良好な相関関係 にあること。
- 対象地域においては崩壊発生・非発生の降雨特性を
 区分する潜在崩壊面積指数の基準値として 1.3×
 10⁴km²が過去の崩壊実績から採用されうること

を提示した。以上の検討結果および既往研究において示 されていることを基盤として、仮に本研究の対象地域が 地震の影響を受けて地震前と比較して少ない降雨量で崩 壊が発生することを想定した場合の結果について示す。 具体的な検討手法として、有効粘着力を 5.0kPa から 0.1kPa 刻みで低下させた場合、抽出された各豪雨におい て、どの値で潜在崩壊面積指数による崩壊発生基準値を 上回るかについて土壌雨量指数との対応関係によって検 討した。結果を図-4.6 に示す。

図-4.6 より有効粘着力の値の低下によって崩壊が発生し ていない規模の土壌雨量指数が計算される降雨において も崩壊が発生する可能性があることが判る。さらに崩壊 発生基準値に達した有効粘着力の値と土壌雨量指数の両 者には良好な相関関係が確認される。冨田ら (1996) は、

兵庫県南部地震を対象に地震前と比較して地震後は5割 から7割から程度の降雨によっても崩壊が発生している ことを報告しているが、これを参考として図-4.6 には対 象地域において崩壊が多発した土壌雨量指数値(206mm) の70%および50%ラインを併せて示している。これは同 地域が兵庫県南部地震規模の影響を受けたことを想定し たものである。さらに鳥居ら(2007)は同地震を対象と して土質試験の結果から地震動の影響をうけて土の粘着 力が2割程度まで低下している可能性があることを指摘 しているが、冨田ら(1996)によって報告されている結 果と併せてみると、5 割程度の降雨で発生するとした場

表 4.3 崩壊発生基準領域における各降雨イベントの 十壌雨量指数および有効粘着力基準値

Event No	SWI	C_{eff}	Area
Event_No.	(mm)) (kPa) /	
22	110	4.4	2
42	80	3.8	3
46	68	3.4	3
47	78	3.2	3
93	80	3.7	3
103	89	3.7	3
105	75	3.4	3
110	75	3.4	3
125	84	3.7	3
171	41	2.8	3
176	55	3.1	3
186	81	3.8	3
223	98	3.8	3
231	118	4.4	2
236	79	3.8	3
240	96	3.8	3
250	67	3.2	3
316	66	3.3	3
318	206	5.0	1
322	127	4.7	1
332	97	3.8	3
364	85	3.9	3
377	117	4.1	2
380	136	4.3	2
389	107	4.2	2
393	129	4.4	2
400	65	3.3	3
402	69	3.5	3
447	75	3.6	3
452	50	2.9	3
454	89	4.1	2
462	55	3.0	3
470	88	3.8	3
471	116	4.2	2
473	80	3.8	3
524	69	3.4	3
530	119	4.5	2
531	119	4.2	2
534	120	4.4	2
541	97	4.2	2
566	89	3.8	3
591	191	4.9	1
593	84	3.5	3
595	66	3.4	3
601	64	3.3	3
604	81	3.7	3
610	129	4.2	2
662	78	3.3	3
673	61	3.1	3
695	80	3.7	3

合の有効粘着力の低下は約 19%程度であり、鳥居ら (2007)による解析結果と相対的にみて対応しているこ とが確認される。同地域が兵庫県南部地震規模の影響を 受けたことを想定し、有効粘着力と土壌雨量指数の両者 の関係を用いて降雨による崩壊発生危険度の区分を行な うとAREA1が地震前の70%程度の降雨よって崩壊が発 生する領域,AREA2 が 50%程度の降雨によって崩壊が 発生する領域となり、AREA3 が非発生領域となる。そ の対応関係について整理したものを表 4.3 に示す。

表 4.3 から、抽出された 50 イベントうち地震動の影響 うけ土質強度が19%程度まで低下したことを想定すると 地震前と比較して新たに 15 イベントが崩壊発生危険降 雨として抽出されることが確認される。

本論においては応答指標を算出するためのパラメータ ー値として有効粘着力を使用しているため、土質試験に よる実験値そのものとの比較はできないことは自明であ るが、以上の結果は広域を対象として応答的に地震後の 降雨による崩壊発生危険度が崩壊発生機構の面からも評 価できる可能性を示唆するものである。無論、本手法は あくまで応答解析としての結果であり、詳細な崩壊発生 位置の予測するものではないが、本論において提示した 手法を地震多発地域に属する我が国において検討してお くことは、今後においても発生する可能性のある地震に 対して地震後の降雨による土砂災害を軽減する方策とし ては有用なものであると考える。

4.4 まとめ

本論においては、広域における地震後の降雨による崩壊 発生危険度の影響を崩壊発生機構の面からも評価するた めの手法について検討した。検討にあたっては既に有効 性が確認されている土壌雨量指数および執印ら(2011) によって提示されている潜在崩壊面積指数の両者を使用 した。検討の結果、

- 1. 土壤雨量指数と潜在崩壊面積指数は良好な対応関係 にあること。
- 2. 潜在崩壊面積指数は土壌雨量指数と比較して豪雨時 の崩壊発生・非発生区分が明瞭であること。
- 潜在崩壊面積指数の算出に用いられている土質強度 定数の変化を考慮することで、応答的に崩壊発生機 構の面から地震後の土質強度の低下を考慮した降雨 による崩壊発生危険度が評価できる可能性があるこ と。

以上の3点を提示した。

おわりに

本検討は砂防学会による東北地方太平洋沖地震災害調 査委員会の助成をうけて行なわれた。震災によって亡く なられた多くの人々のご冥福を祈ると共に、一刻も早い 復興を心より祈願するものである。

引用文献

- Chang, K.-T., Chiang, S.-H., Hsu, M.-L.(2007) : Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression, Geomorphology, 89, p. 335-347
- Chang, J. C., Slaymaker, O.(2002) : Frequency and spatial distribution of landslides in a mountainous drainagebasin: Western Foothills, Taiwan, Catena 46, p.285-307
- Chuang, S. C., Chen, H., Lin, G. W., Lin, C. W., Chang, C. P.(2009) : Increase in basin sediment yield from landslides in storms following major seismic disturbance, Engineering Geology 103, p. 59-65
- Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Lin, J., Hsu,

M., Lin, C., Horng, M., Chen, T., Milliman, J., Stark, C. P.(2004): Earthquake-triggered increase in sediment delivery from an active mountain belt, Geology 32, p. 733-736

- Dhakal, A. S., Sidle R. C.(2003) : Long-term modeling of landslides for different forest management practice, Earth Surface Processes and Landforms 28, p. 853-868
- 堀田紀文・康 怡慧・執印康裕・魏 聰輝・張 振生・ 陳 信雄・鈴木雅一(2005):集集地震後の降雨で発生 した崩壊に対する地震の影響について -台湾大学渓 頭実験林における長期林道補修記録を用いた検討-, 砂防学会誌, Vol. 58, No.1, p.3-13
- Keefer, D. K.(1994) : The importance of earthquake-induced landslides to long-term slope erosion and slope-failure hazards in seismically active region, Geomorphology 10, p.265-284
- 国土交通省河川局砂防部・気象庁予報部・国土交通省国
- 土技術総合研究所(2005):国土交通省河川局砂防部と気 象庁予報部の連携による土砂災害警戒避難基準雨量の 設定手法(案)
- 近藤観慈・林拙郎・王 文能・沼本晋也・川邉 洋(2003): 1999 年台湾集集地震およびその後の豪雨による土砂 災害,自然災害科学, Vol. 22, No.3, p. 255-270
- Lin, C.-W., Shieh, C.-L., Yuan, B.-D., Shieh, Y.-C., Liu, S.-H., Lee, S.-Y.(2003) : Impact of Chi-Chi earthquake on the occurrence of landslides and debris flows: example from the Chenyuan River watershed, Nantou, Taiwan, Engineering Geology, 71, p. 49-61
- Lin, C.-W., Liu, S.-H., Lee, S.-Y., Liu, C.-C.(2006): Impacts of the Chi-Chi earthquake on subsequent rainfall-induced landslides in central Taiwan, Engineering Geology, 86, p. 87-104
- 森脇武夫・小堀慈久・山田良子(2004): 呉市における降 雨による斜面災害に及ぼす平成 13 年芸予地震の影響, 第 49 回地盤工学シンポジウム平成 16 年度論文集,地 盤工学会, pp.307-314
- 岡田賢治(2001):土壤雨量指数, 測侯時報, 69-5, p.67-100
- Okimura, T., Ichikawa, R.(1985) : A prediction method for surface failures by movements of infiltrated water in a surface soil layer, Natural Disaster Sci., Vol.11. p. 41-51
- Ou, G.-Q., Pan, H.-L., Liu, J.-F., Fan, J.-R., You, Y.(2010) : Characteristics of sediment-related disasters triggered by the Wenchuan earthquake, International Journal of Erosion Control Engineering, Vol. 3, No.1, p. 59-68
- Shieh, C. L., Chen, Y. S., Tsai, Y. J., Wu, J. H.(2009) : Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China, International Journal of Sediment Research, Vol. 24, No.2, p. 177-188
- 執印康裕・堀田紀文・松英恵吾・有賀一広・田坂聡明 (2011):土壌雨量指数および潜在崩壊面積指数を用い た崩壊発生降雨特性の評価について,砂防学会誌,Vol. 63,No.5,p.37-42
- 鈴木雅一・小橋澄治(1981): がけ崩れ発生と降雨の関係 について、砂防学会誌(新砂防), Vol.34, No. 2, p. 16-26
- Tang, C., Liang, J.-T.(2008) : Characteristics of debris flows in Beichuan epicenter of the Wenchuan earthquake triggered by rainstorm on September 24, 2008, Journal of Engineering Geology, Vol. 16, p. 49-61
- 冨田陽子・桜井亘・中 庸充(1996): 六甲山系における 地震後の降雨による崩壊地の拡大について,砂防学会

誌 (新砂防), Vol. 48, No.6, p. 15-21

- 鳥居宣之・沖村孝・加藤正司(2007): 地震後の降雨によ る斜面崩壊発生機構に関する実験的検討, 土木学会論 文集 C, Vol.63. No.1, p. 140-149
- 宇都宮大学演習林研究部(1999):平成10年8月末豪雨に よる船生演習林被害の記録,宇都宮大学農学部演習林 報告,35, p.119-123